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INTRODUCTION

With the continued study of the theory of assoclative algebras, attention has been directed
to non-associative algebras or to algebras where the associative law is replaced by a type of par-
tial associativity. Many papers on this subject have appeared ir thz literature, probably the
most notable among them being Cayley's (1681) algebra of order €, an eight unit generalization of
the real quaternions. L. E. Dickson (1930, pp. 16-1€) was the first to obtain the properties of
Cayley's algebra without computations. He also proved that right and left hand division, except
by iero, is always possible and is unique, a fact which was overlooked by Cayley. An equivalent
algebra had been discovered by J. J. Graves (1848) as early as 16LkL.

More recent contributions have been made by R, H. Bruck (19LL) and N. Jacobson (1937). In
a series of papers (1942a, 1542b) A. A. Albert obtains a generalization of many elementary proper-
ties of a non-associative algebra and where possible makes a correlation to the analogous proper-
ties of the associative algebras. In a still later paper (Albert, 1944) he has made yse of the
fact that if the multiplication of matrices is performed by multiplying row by row, column by col~
unn, or column by row, non-associative algebras are formed. A structure theory is developed for
not only algebras invelving matric multiplication but for any algebra involving an involution.
Blbert sugpests that the algebras formed by non-associative matric multiplication may have some
applications in problems occurring in the physics.

In this paper we shall consider a specific rion-associative algebra sugrested by a problem
in finite dimensional vectcr spaces over the field of complex numbers. In consideration of such
a vector space, we note that the vectors form an additive abelian group under vector addition. We
define the inner product of two vectors ©< and /9 to be

n
(c, A) - X ayby = a7 (1"
i=1
where the a; and by are tha coordinates of ©< and f? with respect to a fixed basis for
the vector space, and where A and BCT are (1 xn) and (n x 1) matrices, respectively. The
matrix BCT 49 obtained from B by replacing each element o{ B by its complex conjugate and
transposing the result. Since the a; and b, are numbers in a field F, (X, ;3) is a num-
ber in F3 hence we have a mapping of the inner products { OC, s ) onto F. In case the vector
space 1s of dimension one, this mapping becomes a mapping of (V3(F), V1(F)) onto F and hence

onto Vi(F), We may consider this mapping as an operation of multiplication in Vy(F). Using the
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usual definition of addition in F together with this operation of multiplication, we have an al-
gebra derived from F which is non-associative provided F is complex. However, we shall consid=-
er a somewhat more general algebra of this type wherein we replace F by the ring R of square
natrices of order n where the matric elements are numbers in the complex fleld.

The algebra we shall presently discuss is among those covered by W. E. Jenner's (1950) de-
finition of a nanassociative ring, which he defines as an additive abelian group closed under a

product operation with respect to which two diatributive laws hold.

DEFINITIONS AND THEOREMS

We shall now consider an algebra C:y generated by square matrices of order n with ele-

ments in the complex field.

DEFINITION 1. Let C;Y be a non-associative algebra consisting of elements 4, B, C, ...,
(these elements being n x n matrices over the complex field), closed with respect to two well-
defined binary ;perntions, addition (+) and multiplication (©), defined as follows:
1. Addiiion 1s defined as the usual addition [or matrices,
2. Multiplication is defined by the relation
Ao B = BT (2)
where ABCT 13 the ordinary matric product of A and BCT.
As a consequence of definition 1 we have the following theorem:
THEOREM 1, The set § of elements A, B, C, ... of C&' satisfy the following state-
mentst
1. S 4is an abelian group under the operation (+).
2a, S is closed under the operation (0).
b. With respect to the operation (©) there exists a right identity.
3. With respsct to the operation (©) both right and left distributive laws hold.
We must show that the following statements are satisfiod for arbitrary A, B, C, E":?l
I. A+3B isin OF 3 (closure)
II. A+ (B +C) w (A+B) +C; (assoclativity)
II11. There exists an element 0O € (7? such that A + 0 = 0 + A = A; (0 is defined to be
the identity element with respect to the operation (+))
IV. X + A =0 has a unique solution X; (inverse element)
V. A+ B =B+ A; (commutative léw)
VI. A©B isin 0(; {closure)
Vilr. (B+C) oA =BoA+CoA; (right distributive law)
VII . Ao (B+C)=Ao0B+AoC; (left distributive law)
VIII. There exists a unique element I & (% such that Aol = A (right identity ele-
ment)
Statements I ;hrough v rgliow as well-known properties of matrices based upon properties of
the complex fleld which is fhe field of the elements of the matrix, Using the product operation
defined by (2), statements VI through VIII are readily verified. Closure 1s evident, since by de-

finition the product A o B = C where C is a matrix or order n and hence an element of C77 .
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VIIr. (B+C)o A = (B +CYACT = BACT + cACT =BoA +CoA

VII. Ao (B+C)=A(B+C)CT = A(BCT + CCT) = ABCT + ACCT = 2 0 B + A0 C,

We prove the following Lemna before verifying statement VIII,
LEMMA 1. If XOA =0, and AOY =0 for an arbitrary AEO{,then X=Yao,
Assune X ¥ O, then there exists an element qu # O for some p, Q. Since A is arbitrary,

we may take A = (ayj) where ajy =0 for i £ 1, j Fq: ajg = 1. Then

(X0 h)p = i X4 ayy - xq F O (315 is the complox conjugate
J=1
of .1,1)' Hence we have at least one element in the product X © A = O which 1s not equal to zero,
contrary to the hypothesis. Therefore we must conclude that X is the zero element. An argument
gimilar to the one just employed will show that Y equals zero. 0
VIII. If I is tha matrix whose principal diagonal elements are all 1's and whose non-diagonal

elements are all zero then:
AoIeatTenran,

In order to show the uniqueness of I, assume there is a second identity J such that A © J = A,

Then AoI=4Ao0y,
whence AoI-Ao0oJ =0,
and Ao (I-J)mo0.

Since A is arbitrary, we may apply lLemma 1, and we have
I-J=0,
oo 1=4J

Thus we have verified statement VIII. %e may remark that statements VIIr and VII are a direct con=-
sequence of the definition of the inner product in a finite dimensjonal vector spacae,

THEOREM 2, 0( does nnt possess a left identity, and under the operation (o) is non-
as3oclative and non-abelian.

The presence of a left identity would insure the existence of matrices A and B such
that A © B = B, However, constl)derat,ion of the following simpls example will show tha failure of a

a
left identity. Let A = where &, b, ¢, d are elements of the field F, and let
d

c
(o] 1!
B = 3 then
(o] o]

for any cholce of elements a, b, ¢, d since
a b 0 1 b o
o - and
C d 0 0 d o

o 1 b 0
can never equal s
o 0 a 0

The following counter-example clearly shows the failure of associativity in o .

SR G R S B G B A A
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1 o) (1 1) (o -1) (1 o) (-1 0 (—1 -)
o [ - o -
(-1 1 -1 1 1 -1 -1 1 -1 =2 1 <

The absence of a left identity assures the failure of the commutative law since A O 1 = 4,
while I o A § A, in general.

Albert, (1_9!12) has shown that the existence of a right and left identity is tantamount to as-
serting assoclativity. Consequently the absence of a left identity is assured since o( is non-
associative and possesses a right identity, We may remark that A 0B = B has a solution A =1
if and only if B 1s hermitian, since

1op=18°T «1B =3B

and if I o B = B, we must have BCT = B, 1t may happen that A O0B=DB for some matrix not equal

to I,

POLTNOMIALS WITH COEFFICIENTS IN (O

We shall designate by OI[XJ the set of all polynomials in x with coefficlents in a .
1t is convenient to postulate that the indeterminate x be commutative with all elements of X B
that is, Ax = xA for each element A 50(. Furthermore, we shall assume that the commutative and

asgociative laws hold for all indeterminates x.

DEFINITION 2. If
£(x) = Anxn + An_lx"'l 4 oeen 4 A (3
and
glx) = B+ B X" e L )
then their sum is a third polynomlal such that if m = n,
S(x) = (A + B)x® ¢ (A + B )x™ L+ v (& + Bo)e (5)
If o fn, we may take m > n, then
S(x) = Bpx™ + ...+ Bua1x™L + (g ¢ BN 4 ey ¢ (A ¢ B) . (6)

We state tha following definitions and theorems concerning the degrees of elements of O{[x].

DEFINITION 3. In the polynomial f(x) the highest power of x which has a nonzero co-
efficient is called the degres of f(x). (By this definition a nonzero element of 0( is of de~
gree zero in 0[[)(_7.) We shall assign to the zero element the degree minus infinity, in order that
certain theorems concerning the degrees of p'olynomials shall hold without exception.

THEOREM 3. The degree of [(x) + g(x) 1s not greater than the degree of f(x) nor greater
than the degree of .g(x).

Case 1, If m = n. By definition the sum of f(x) and g(x) can be represented by (5) which
is a polynomial of degree not greater than m or n.

Case 2. If m # n. Suppose m >n. This sum can be represented by (6) which is a polynomial
of degree net greater than m or n.

COROLLARY 1. If m ¥ n, then the degree of f(x) + g(x) 13 precisely the larger of the
two degrees. This follows since the coeflicient of the highest power of x in the polynomial of

larger degree cannot be zero, and the coefficient of the term of highest degree in the sum is Jjust
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the polynomial of larger degree. Hence the sua of
term of highest degres in

the coefficient of the

the correaponding coefficients cannot be zero.

DEFINITION §. 1If for a given nonzero elemant & € O , there exists a nonzero element

& OF, for which B © A »0, then A is defined to be a proper right divisor of zero.
B & » Lol

DEFINITION 6.  If for a given nonzero element & € O, there exists a nonzero element
(c €, for which A ©C =0,

MacDuffee (1946) shows that a Rece
{ zero is that the determinant of A be zero. The elements of 0( are n x n matrices,

then A 1is defined to be a proper left divisor of zero.

ssary and sufficient condition that the matrix A be a

divisor o

hence there must exist elements in 0{ which are proper divisors of zero. Since there are proper

divisors of zero in 0{ , there are certainly divisors of zero in Q[x .

THEOREM L. The existence of proper right divisors of zero in or implies the existence of
‘proper left divigors of zero in %4 , and conversely.
By definition, if B © A = 0, where A £ 0 and B F O are olements of O/ ,then A 13 a

right divisor of zero, similarly B 1is a left divisor of zero., The converse follows by the same

argument.

DEFINITION 7. The product f(x) © g(x) 1s defined to be a polynomial of the formt

n im
£{x) o g(x) = (4p © By)xP*3 | (7)
p=0 qZ-O

THEOREM S, The degree of f(x) o g(x) cannot exceed the sum of the degrees of £(x) and

(&(x).
Ifwelet peon=-1 and q=m-} where 051 %n and 0 XJZm in (7) the product

L] n
e
%

The power of x in any term of the product cannot exceed n +m since 1 and j are both non-

.can be represented by

negative, therafore tha degree of f(x) © g(x) cannot exceed the sum of the degree of f(x) and

g(x).

COROLLARY 2, If Ap and Bp s8re not both proper divisors of zero, the product palynomial
has precisely one term of degree n + m,

This is the term of highest degres and 1s the degree of the polynomial.

COROLLARY 3. If A, and By are proper divisors of zero the degree of the product poly-

nomiel can be less than n + m,

This follows since An © B, may equal zero.

THEOREY la. The set 87 of elements f£(x), g(x), h(x), ... of CN[x] satisfy the
folloming statementss

1. 81 1s an abelian group under the operation (+).
2a, 8) 1s closed under the operation (o),

b. With respect to the operation (o) there exists a right identity.
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3.  With respect to the operation (o) both right and left distributive laws hold.

We mu.st show that statements analogous to statements I through VIII, in the proof of
theorem 1, hold for Offx] . Statements I through V follow from elementary properties of poly-
nomials and from the fact that they hold for ths elements of 0’ . Statemant VI follows from
Definition 7. The product of two polynomials is a third polymomial with matric coefficients,
hence we have closure.

YiIr. To prove that [g(x) + h(x)J o £(x) = g{x) 0 f(x) + h(x) 0 £(x) we may write f(x), g{x)

and h(x) as follows:

£(x) -i apxt 5 g(x) -i ,aJxJ 5 hix) = i Cxé‘k ¥

i=0 =0 k=0

Substituting in the left side of VIIr, we have

n I n
Fae ¥t ] of e
30 . 13 =0

We can writ® the expression in brackets as

i (€gBy * g Cq )x

=0
where € =1 ir 2sm; €p =0 ir £>n
=1 if g£=r; Ve =0 if £F> v

and q is the larger of the two integers m and r. Substituting in (8) we have

(€4Bg + '7[C¢ Ix OZ Aixi

n

; ﬁ[(el Bg + NMyCylo Ai] I+
i =0

n

1
Z (€48 o Ay + ML, 0 a)x?
10 Z=

m

n T n
i 1
5T e e 3T e
£=0 i=0 20 i=

g{x) o £{x) + h(x) o £(x) «
Statement VIIR can be proved in the same fashion.

n

n
2; Aixi oI = ; (l\ioI)x'1

n

Z Aix1 .
=0

The uniqueness of I in offx] follows immediately from the uniqueness of I in A,

THEOREM 2a. (J/[x] does not possess a laft identity, and under the. operation (o) is non=
assoclative and non abelian.

The lack of a left identity, associativity, and commutativity in OZ assures their ab-

sence in W[xj, for by taking elements of degree zero the counter-examples given for o lppij:
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directly to X [x]-

THEOREM 6. EBuclidean algorithu (right} in 0{ [x]. let f(x) and g(x) be polynomials

of degree n and .m, respectively,
n there exist unique slements q(x) and r{x) such that

where the coefficient of the highest power of g(x) 1lanot a
proper divisor of zero, the -
£(x) = q(x) © g(x) + r(x) , 9)
where the degree of r(x) 1s less then m.
There are two cases to be congidered,
Case 1. If m>n, then q(x) =0 and r(x) = £{x).
Case 2. If m<n, let us consider tha polynomial fl(x) such that
£1(x) = £) = [ 0 8" o &)
where the coefficlent of xP 1s A - (A 0 C) 0 By = 0. Since By 1s mot a proper divisor of
zero, there 1is an element C such that (An 0 C) o By = Ay by virtue of the properties of matricesJ
If the degree of fj{x) is less than m, we may take q(x) = A, o Cx™® and r(x) = f1{x). If
the degree of fy(x) 1s k m, and the coefficient of xK in fy(x) 4is D, then
tp(x) = £1(x) = (D 0 =) o g(x)
= f(x) ~ [An ° Cx“‘"‘] o g{x) - [D ° ka'm] o g(x)
= f(x) - [An 0 Cx™@ + Do ka""] og(x) .
The degree of fp(x) 1s less than k. If the degree of fp(x) 1is less than m, we may choose
q(x) = A, o Cx"@ + D o Cx¥, r(x) = £p(x).
However, if the degree of fz(x) is greater than m, a finite number of repetitions of this pro-
cess will yleld a q(x) and r(x) which will satisfy equation {9). In order to show the unique-
ness of the polynomials q{x) and r(x), suppose there exist a qi(x) and ry(x) such that
£{x) = q1(x) o g{x) + ry(x),
where the degree of rl(x) is less than m. Then
a(x) o g(x) + r(x) = qy(x) o g(x) + ry(x)
or q(x} - q1(x) o g(x) = ry(x) ~ r(x) . (10)
The degree of ry(x) - r(x) is less than m, but by corollary 2 the degree of the left side of
(10) can be less than m only if q(x) - q1(x). Hence, the representation in theorem 6 is unique.

The following example will illustrate the right Euclidean algorithm:
S 3 -7 1 S 3
Let f(x) = x2 4 x +
-1 1 6 n 1 8
1 2 1 3 ’
and g(x) = x - z then
1 0 -1 1
3 1 -1 o] N L
q(x) = x + and r(x) = 3
1 - 2 1 6 T
5 3 2 -7 1 5 3
x< » X + -
-1 1 ] L 8
(3 1) (—1 0 2 1 03 Lob
x + o X = + .
1 -1 2 1 1 o -1 1 6 7

The right Eucl}denn algorithm may or may not hold if the coefficlent of g(x) 1s a proper divisor

of zero, The following example illustrates a case in which the algorithm fails to hold.
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1 0 1 2
Let f£(x) = x + and
1 2 3 L
1 2 1 0
glx) = X+ .
2 o 1

¥e cannot find a q(x) such that the product of the leading coefficients of q(x) and g(x)
1 0 1 2 1 [}
equals since® is a proper divisor of zero and is not a divisor
12 2 L 12
of zero. If f(x) = q(x) o g(x) ¢ r(x) we shall call r(x) the right remainder in the division
of f(x) by g(x) 1in a <] . If r(x) =0 them g(x) 1is said to be a right factor of f(x)
in QAT

THEOREK 7. Euclidean algorithm (left) in (7 [x]. Llat f(x) and g(x) be polynomials of
degrees n and m, Tespectively, where the coefficient of the highest power of g{x) 1ia not a
proper divisor of zero, then there exist unique elements p(x) and s(x) such that

£(x) = g(x) o p(x) + s(x) {11)
where_the degree of s(x) 4s less than m. The proof is similar to that of the previous theorem,
the principal differente being that we associate the elements of 0( from tae right.

There are two cases ta be considered.

Case 1. If m »n, then p(x) = 0 and s(x) = f(x).
Cese 2. If m =n, define the polynomial fl(x) such that
£9(x) = £(x) - g(x) o [n ° Anx"""]
where the coefficient of x" 1s A = Bjo (D oAp) = 0. Since B, 1is not a proper divisor of
zero, there is an element D such that B o (Do A)) = A, If the degree of f1(x) is k and
k< m we may take p(x) =D o Anx""" and s(x) = tl(x). If x2 m, and the coefficient of x¥
in fy{x) is E, then
f5(x) = £1(x) = g(x) o [:D o Ex"T |
= f(x) = g{x) o [D o Anx""m - glx) o [D ° Exk-m]
= f(x) - g{x) o [D o A.nx"'m +Do Exk-ﬂj
The degree of fz(x) is less than k. If the degree of fz(x) is less than m, we may choose
p(x) =D o Anx“'m +DoExXX™ and r(x) = f2(x).
Eowever, 1if the degree of f2(x) is greater than m, a finite number of repetitions of this pro-
cess will yield a p{x) and s(x) which will satisfy equation (11). The uniqueness of p{x)
and s(x) can be proved by the method of theorem 6.
We shall call s(x) the left remainder in the division of f(x) by g(x). It s(x) =0,

then g(x) 1s said to be a left factor of f(x).

SUIBIARY

The algebra me have discussed in this paper is a particular algebra in which the elements
are matrices of order n. In theorem 1, we have a get of statements which might well be consider~
od as a set of postulates satisfied by the elements ol 0( « This set, however, does not complete-
1y describe N es 19 evidenced by the fact that theorems 7 and 8, while possible for- 174 »
will not follow from tho statements of theorem 1 alone. This gap may be filled by adding the fol-
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1owing postulates

Every element of O 1s iero, a proper divisor of zero, or an clement

such that there exist solutions of eq_uat,ions AoX=1 andYodA=1
where I is the right identity element.
1stence of divisors of zero in 0[ is dependent on the properties of the elements of 0!,
The existenc

and would not necessarily hold in non-assoclative algebras in gengral.

The algebra with which we have dealt satisfies the postulates set forth by Albert (19Lh)
and Jenner (1950) and hence the theory developed in each of these papers would be applicable here.
However, it 1s well to note that the algebra we have discussed is, in fact, more specialized than
the algebras discussed in these papers, and therefore the .results obtained here need not, in every
case apply to all of the more general algebras of Albert an_d Jenner.

As defined, a becomes associative if the elements of 74 are diagonal matrices with
olements from the real [ield. These elements form a subalgebra a/ s which is not only associa-
tive but commutative. A4 special case of the subalgebra 0’, » 1s one in which the elements are
of order one.

The development of 0[ [x] is analogous to the usual development of polynomial domains
over fields. Again it is apparent that many of the properties of al [x] do not necessarily hold
for non-agsociative algebras in general. This is especially true since many of the properties of
Qflx] are dependent on the elements of O . 1In our treatment of Ql(x] we assumed that
associativity holds for the indeterminate x, [furthermore that x 1s commutative with all the
elements of 0( « Hence, throughout our discussion we have purposely avoided treating the x as
a variable or unknown quantity. The problem becomes much more complex if this is attempted since
a linear polynomial of general form would be

Abx+xo0B+C
and a quadratic would take the form
(Rox)ox+Bo(xox)+xo(Cox)+(xoD)ox+(xox)oE+xo0(xoF)s+
Gox+xoH+M
The problem would still be difficult if unilateral polynomials such as
Ao(xox)+(Box)ox+Cox+D
are considered, since it is apparent that the solutions of the unilateral matrix equation would
not apply here due to lack of associativity in the terms of the equation of degree grester than
one. This complexity throughout the entire paper is due to the no;m-comuntivity and even more to

the non-associativity of the elements of 0( .

The consideration of the polynomlals ovar 0('1, that is 0?1{:], becomes much easier,
and the difficulty in nsing X  as & varlable or unknown quantity in OZI vanishes,

Consequently, in this case many theoroms of polynomial domains over a fisld, auch as the remainder

theorem, would be valid,
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